skip to main content


Search for: All records

Creators/Authors contains: "Grossman, Arthur R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. Results In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans . We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. Conclusions We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes. 
    more » « less
  2. Primary endosymbiosis allowed the evolution of complex life on Earth. In this process, a prokaryote was engulfed and retained in the cytoplasm of another microbe, where it developed into a new organelle (mitochondria and plastids). During organelle evolution, genes from the endosymbiont are transferred to the host nuclear genome, where they must become active despite differences in the genetic nature of the “partner” organisms. Here, we show that in the amoebaPaulinella micropora, which harbors a nascent photosynthetic organelle, the “copy-paste” mechanism of retrotransposition allowed domestication of endosymbiont-derived genes in the host nuclear genome. This duplication mechanism is widespread in eukaryotes and may be a major facilitator for host–endosymbiont integration and the evolution of organelles.

     
    more » « less
  3. Abstract

    Dinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome ofBreviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term ‘dinoTADs’) without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.

     
    more » « less
  4. null (Ed.)
    Abstract In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida . These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases. 
    more » « less
  5. The uptake and conversion of a free‐living cyanobacterium into a photosynthetic organelle by the single‐celled Archaeplastida ancestor helped transform the biosphere from low to high oxygen. There are two documented, independent cases of plastid primary endosymbiosis. The first is the well‐studied instance in Archaeplastida that occurred ca. 1.6 billion years ago, whereas the second occurred 90–140 million years ago, establishing a permanent photosynthetic compartment (the chromatophore) in amoebae in the genusPaulinella. Here, we briefly summarize knowledge about plastid origin in the Archaeplastida and then focus onPaulinella. In particular, we describe features of thePaulinellachromatophore that make it a model for examining earlier events in the evolution of photosynthetic organelles. Our review stresses recently gained insights into the evolution of chromatophore and nuclear encoded DNA sequences inPaulinella, metabolic connectivity between the endosymbiont and cytoplasm, and systems that target proteins into the chromatophore. We also describe future work withPaulinella, and the potential rewards and challenges associated with developing further this model system.

     
    more » « less